REPTTACK: EXPLOITING CLOUD SCHEDULERS TO GUIDE CO-LOCATION ATTACKS

Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi, Avesta Sasan, Khaled N. Khasawneh, Setareh Rafatirad,and Houman Homayoun

University of California, Davis George Mason University

Introduction

Micro-architectural Attacks

Micro-architectural attacks have become a threat to cloud users!

- 1 Side-channel attack.
- 2 Transient execution attack.
- 3 Rowhammer attack.
- 4 Faults attack.
- 5

Prerequisite of Micro-architectural Attacks

Workflow of Attack (Ristenpart et al., 2009)

- **1** Submit attack program to the cloud.
- 2 Determine if victim is co-located.
- **3** Start stealing information / interfere with victim program.

Prerequisite of Micro-architectural Attacks

Workflow of Attack (Ristenpart et al., 2009)

- **1** Submit attack program to the cloud.
- 2 Determine if victim is co-located.
- **3** Start stealing information / interfere with victim program.

Before attack, achieving co-location is required.

Motivation

Important to study how to achieve co-location

Brute-force issuing can be easy to defend.

- For attackers: without co-location strategies, subsequent attacks are impossible
- For defenders: more efficient to defend and patch at scheduler level

Vulnerabilities in the scheduler should be studied.

Focus of this work

We focus on co-location step.

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Focus of this work

- We focus on co-location step.
- We don't consider how the attacker obtains location status.
- We don't consider how a specific type of attack works.

Threat Model

Cloud providers

- Trusted, do not assist attackers
- Treat all users (malicious and non-malicious) equally

Threat Model

Cloud providers

- Trusted, do not assist attackers
- Treat all users (malicious and non-malicious) equally

Users

- All users have the same privilege and can only access their own allocated resources.
- Attackers knows about victim applications.
- Non-malicious users always try to optimize the scheduling outcome.

Method

User submitted requirements

Filter-score scheduler

Filter-score scheduler

Widely used type of scheduling pattern ("Kubernetes," 2021; "OpenStack," 2021).

Filtering and scoring based on user specifications

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Filter-score scheduler

Widely used type of scheduling pattern ("Kubernetes," 2021; "OpenStack," 2021).

- Filtering and scoring based on user specifications
- Filtering: Find a list of candidates that satisfy user needs
- Scoring: Rate every candidate and select the one with highest score

Attack Strategy

Replicating user specifications

Attack Strategy

Replicating user specifications

Exploit scheduler features.

Infer victim submitted requirements/preferences

Attack Strategy

Replicating user specifications

Exploit scheduler features.

Infer victim submitted requirements/preferencesReplicate these specifications to the scheduler

Evaluation

 Python behaviorial simulator, implementation based on Kubernetes ("Kubernetes," 2021)¹.

 $^1{\rm It}$ has been re-written in C++ and will be released in the future. Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

- Python behaviorial simulator, implementation based on Kubernetes ("Kubernetes," 2021)¹.
- Server configurations: generated randomly.
- Applications: generated randomly.

 $^1{\rm It}$ has been re-written in C++ and will be released in the future. Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Cluster

 Experiment conducted on Kubernetes deployed on CloudLab (Duplyakin et al., 2019).

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Cluster

- Experiment conducted on Kubernetes deployed on CloudLab (Duplyakin et al., 2019).
- Server configurations: heterogeneous hardware features, generated randomly.
- Applications: randomly selected from popular docker apps, user specifications generated randomly.

Single-instance attack

• What are the factors that affect attack success rate?

Single-instance attack

- What are the factors that affect attack success rate?
- How high can the co-location rate reach?

Single-instance attack

- What are the factors that affect attack success rate?
- How high can the co-location rate reach?

Resource requirements:

Single-instance attack

- What are the factors that affect attack success rate?
- How high can the co-location rate reach?

Affinity:

Multi-instance attack

Does increasing number of attack instances improve attack success rate?

Multi-instance attack

Does increasing number of attack instances improve attack success rate?

Cluster Experiment Results

Single-instance attack

- What are the factors that affect attack success rate?
- How high can the co-location rate reach?

Notation:

- 1 #. of Required Node Affinity
- 2 #. of Preferred Node Affinity
- **\underline{3} #**. of Required Inter-Application Affinity

■ <u>4</u> #. of Preferred Inter-Application Affinity Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Cluster Experiment Results

Multi-instance attack

Does increasing number of attack instances improve attack success rate?

Mitigation

Mitigation Strategy

Randomly skip affinity check during filtering.

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Mitigation Strategy

- Randomly skip affinity check during filtering.
- Adding randomness!

Mitigation

1 Co-Location Rate Co-Location Rate Co-Location Rate . 0 8.0 Affinity Satisfaction 8.0 Affinity Satisfaction 2.0 Affinity Satisfaction Affinity Satisfaction 0.8 8.0 0.8 Affinity Satisfaction Co-Location Rate 0.6 0.6 0.4 0.4 0.2 0.2 0.2 0 0 2°10 3°10 2°10 5°10 0°10 0°10 0°10 00°10 00°10 00°10 2010 00/0 20/0 20/0 3% 50%,00%,50%,20%,30%,20%,60% 0% 0/0 p_s p_s

Cost: measured by average number of violated specifications

p_{m_n}, p_{m_a}	$p_{\rm s} = 0\%$	$p_{s} = 1\%$	$p_{s} = 2\%$	$p_{s} = 3\%$	<i>p</i> _s = 4%	$p_{s} = 5\%$	$p_{s} = 10\%$	$p_s = 15\%$	$p_{s} = 20\%$
0.5	0.00	0.45	0.68	0.88	1.07	1.19	1.68	2.00	2.17
0.9	0.00	1.65	2.29	2.78	3.02	3.33	4.04	4.40	4.57

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Discussion

Trade-off

Trade-off between security and performance

Let users have control over scheduling outcomes

- Better performance: can run on more suitable machines
- Worse security: location in the cloud can be relatively accurately determined

Roofline Model

Optimum trade-off point exists

For cloud managers

- Expose heterogeneity as little as possible
- Bring randomness to scheduling process

For cloud managers

- Expose heterogeneity as little as possible
- Bring randomness to scheduling process

For users

- Utilize heterogeneity as little as possible
- Keep scheduling specifications confidential

For attackers

- Study target applications
- Use multiple attack instances with different possible specifications to increase coverage
- Be aware of the trade-off point of attack instance: optimize for cost of attack

Conclusion

Our contributions

- Affinity feature in filter-score schedulers are prone to be exploited
- Repttack: an attack method to increase the chance of achieving co-location in a heterogeneous cluster
- Mitigation technology
- Guidelines for cloud managers and users

Introduction 000000 Method 000000 Evaluation 00000000 Mitigation 000 Discussion 00000 Conclusion 00 References

References

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,						
Hibler, M., Johnson, D., Webb, K., Akella, A., Wang, K., Ricart, G.,						
Landweber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S., &						
Mishra, P. (2019). The design and operation of CloudLab.						
Proceedings of the USENIX Annual Technical Conference (ATC),						
1–14. https://www.flux.utah.edu/paper/duplyakin-atc19						
Kubernetes [[Online; accessed 1 May 2021]]. (2021).						
OpenStack [[Online; accessed 1 May 2021]]. (2021).						
Ristenpart, T., Tromer, E., Shacham, H., & Savage, S. (2009). Hey, you, get						
off of my cloud: Exploring information leakage in third-party compute						
clouds. Proceedings of the ACM conference on Computer and						
communications security, 199–212.						

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks